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Recent advances in computational chemistry have produced

force fields based on a polarizable atomic multipole descrip-

tion of biomolecular electrostatics. In this work, the Atomic

Multipole Optimized Energetics for Biomolecular Applica-

tions (AMOEBA) force field is applied to restrained

refinement of molecular models against X-ray diffraction data

from peptide crystals. A new formalism is also developed to

compute anisotropic and aspherical structure factors using fast

Fourier transformation (FFT) of Cartesian Gaussian multi-

poles. Relative to direct summation, the FFT approach can

give a speedup of more than an order of magnitude for

aspherical refinement of ultrahigh-resolution data sets. Use of

a sublattice formalism makes the method highly parallelizable.

Application of the Cartesian Gaussian multipole scattering

model to a series of four peptide crystals using multipole

coefficients from the AMOEBA force field demonstrates that

AMOEBA systematically underestimates electron density at

bond centers. For the trigonal and tetrahedral bonding

geometries common in organic chemistry, an atomic multipole

expansion through hexadecapole order is required to explain

bond electron density. Alternatively, the addition of inter-

atomic scattering (IAS) sites to the AMOEBA-based density

captured bonding effects with fewer parameters. For a series

of four peptide crystals, the AMOEBA–IAS model lowered

Rfree by 20–40% relative to the original spherically symmetric

scattering model.
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1. Introduction

The number of X-ray crystal structures in the Protein Data

Bank (PDB) with a resolution of higher than 1.0 Å continues

to increase rapidly (Berman et al., 2000). In late 2002, there

were already over 100 structures available at subatomic

resolution (Afonine & Urzhumtsev, 2004), while as of early

2009 the number had more than tripled to well over 300.

Examples include the proteins lysozyme at 0.65 Å (Wang et al.,

2007), aldose reductase at 0.66 Å (Howard et al., 2004) and

serine protease at 0.78 Å (Kuhn et al., 1998), as well as nucleic

acid structures such as B-DNA at 0.74 Å (Kielkopf et al.,

2000), Z-DNA at 0.60 Å (Tereshko et al., 2001) and an RNA

tetraplex at 0.61 Å (Deng et al., 2001). Crystals that diffract to

high resolution are ideal for studying valence-electron distri-

butions (Jelsch et al., 2000; Muzet et al., 2003; Zarychta et al.,

2007; Volkov et al., 2007; Coppens & Volkov, 2004) that dictate

the electrostatic properties of macromolecules. Electrostatics,

in turn, is one of the driving forces in protein and nucleic acid

folding, which should be understood in detail in order to



predict biomolecular thermodynamics and kinetics (Snow et

al., 2002, 2005; Sorin & Pande, 2005; Pande et al., 2003). In this

work, we contribute an improved theory and algorithm for

computing the anisotropic and aspherical valence-electron

density of molecules for X-ray crystal structure refinement.

Calculation of structure factors is generally based on scat-

tering factors defined by the isolated-atom model (IAM),

which assumes that the electron density around each atom

is spherically symmetric. However, subatomic resolution

diffraction data capture aspherical features of the electron

density that result from bonding and the local chemical

environment. The difference between the IAM and the true

electron density is defined as the deformation density. For

example, aspherical electron-density models of diamond,

silicon and germanium developed by DeMarco and Weiss and

later by Dawson explained the peaks of deformation density at

bond midpoints observed in the experimental data (Dawson,

1967a,b,c; DeMarco & Weiss, 1965). In these works, the IAM

was augmented by atom-centered spherical harmonic expan-

sions, whose physical consequence was to redistribute electron

density from nonbonding lobes into the tetragonal arrange-

ment of bond centers.

A variety of radial functions have been used in combination

with atom-centered spherical harmonic expansions. Modified

Gaussians were promoted by Dawson (1967a), a set of

harmonic oscillator wavefunctions by Kurki-Suonio (1968)

and more recently a formalism based on Slater-type orbitals

(STO) was described by Stewart and coworkers (Epstein et al.,

1977; Cromer et al., 1976; Stewart, 1979, 1977) and by Hansen

& Coppens (1978), which represents the current standard

(Jelsch et al., 2005; Zarychta et al., 2007; Volkov et al., 2007;

Coppens, 2005). However, spherical harmonics are not the

only basis set available to describe the angular dependence of

the deformation density.

We first present a formulation of anisotropic and aspherical

atomic densities based on Cartesian Gaussian multipoles,

which leads to much simpler formulae for the calculation of

structure factors via direct summation in reciprocal space than

the STO-based theory of Hansen & Coppens (1978). We also

demonstrate that Cartesian Gaussian multipoles allow the

computation of structure factors via fast Fourier transforma-

tion (FFT) of the real-space electron density (Cooley & Tukey,

1965). The latter approach, originally proposed by Ten Eyck

(1973, 1977), is the basis of the efficient macromolecular

refinement algorithms (Brünger, 1989; Afonine & Urzhum-

tsev, 2004; Afonine et al., 2007; Agarwal, 1978) implemented in

programs such as CNS (Brünger et al., 1998; Brunger, 2007)

and PHENIX (Adams et al., 2002). The sublattice method

implemented in CNS lends itself to efficient parallelization

(Brünger, 1989).

Boys originally proposed Cartesian Gaussian functions as

basis functions to solve the many-electron Schrödinger

equation (Boys, 1950). The advantage of Gaussians over STOs

in this context is that two-electron integrals have analytic

forms, which has led to the adoption of Gaussian basis sets for

many ab initio calculations (Hehre et al., 1969, 1970). We note

that the equivalence of spherical harmonics and Cartesian

tensors is well known, with key relationships having been

presented by Stone (1996) and Applequist (1989, 2002).

We apply Cartesian Gaussian multipoles to restrained

crystallographic refinements based on the Atomic Multipole

Optimized Energetics for Biomolecular Applications

(AMOEBA) force-field electrostatic model (Ponder & Case,

2003; Ren & Ponder, 2002, 2003, 2004; Schnieders et al., 2007;

Schnieders & Ponder, 2007). The AMOEBA electrostatic

model is based on the superposition of permanent atomic

multipoles truncated at quadrupoles and induced dipoles.

Permanent electrostatics represents the electron density of a

group of atoms in the absence of interactions with the envir-

onment, which may include other parts of the molecule or

solvent. Groups are chosen to be relatively rigid in order to

avoid conformational variability in the permanent multipole

moments. Conversely, the induced dipoles of AMOEBA

represent polarization, the response of the electron density to

the local electric field.

Force fields are widely used to restrain macromolecular

refinement by contributing forces to local optimizations and

molecular dynamics (Brünger et al., 1987), with the latter used

within simulated-annealing algorithms to promote global

optimization (Brünger, 1988, 1991; Brünger et al., 1989, 1990,

1997; Kuriyan et al., 1989; Adams et al., 1997; Brünger & Rice,

1997). Up to now, force fields in crystallography have been

largely limited to the geometric and repulsive terms and have

had no influence on the atomic scattering factors. Therefore,

refinement using a scattering model based on AMOEBA

electrostatics is novel and lends insight into the progress being

made in the development of precise, transferable force fields.

Another limitation of the use of force fields for restraining

X-ray refinement has been the lack of proper treatment of

long-range electrostatic interactions, which is overcome in this

work via use of particle-mesh Ewald summation (PME;

Darden et al., 1993; Essmann et al., 1995; Sagui et al., 2004).

In addition to AMOEBA, polarizable force fields are being

studied by a number of other groups. Maple and coworkers

have pursued a model similar to AMOEBA, but with the

permanent moments truncated at dipole order, which has

shown promising results for protein–ligand complexes

(Friesner et al., 2005; Maple et al., 2005). As an alternative

to induced dipoles, Patel and Brooks employed a fluctuating-

charge model of polarization (Patel & Brooks, 2006), while

Lamoureux and Roux have demonstrated success using clas-

sical Drude oscillators (Lamoureux et al., 2006; Lamoureux &

Roux, 2003). In addition to polarization, Gresh and coworkers

have developed a methodology to include nonclassical effects

such as electrostatic penetration and charge transfer (Gresh,

2006; Gresh et al., 2007; Piquemal et al., 2006, 2007).

Although classical potentials can be validated against

a range of experimental observables, for example small-

molecule solvation energies (Shirts et al., 2003; Shirts & Pande,

2005), high-resolution diffraction data can pinpoint defi-

ciencies in an electrostatics model with high precision. For

example, we show that truncation of permanent atomic

multipoles at quadrupole order limits the ability of the

AMOEBA model to place charge density at bond midpoints.
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We use an efficient solution to this limitation by refining

partial charges at bond centers as originally proposed by

Afonine et al. (2007).

2. Theory

2.1. Subgrid fast Fourier transform

The starting point for this work is the subgrid fast Fourier

transform algorithm (SGFFT), which will be briefly summar-

ized (Brünger, 1989). In FFT-based methods, the electron

density is computed over a lattice chosen to be fine enough to

avoid aliasing effects at a given resolution. This computation

can be made more efficient by an artificial increase in the

atomic displacement parameters (ADPs) of all atoms. The

optimum choice in CNS v.1.2 (Brunger, 2007) for the ADP

offset and grid size follows the work of Bricogne (2001). An

important point is that the electron density is only computed

within a cutoff radius around each atom. As the resolution

increases, the cutoff is increased based on an empirical scheme

to maintain agreement between direct-summation structure

factors and derivatives and the SGFFT calculation (Brunger,

2007).

Structure factors are computed by FFT of the electron

density of an asymmetric unit of atoms (Agarwal, 1978). The

SGFFT is based on factorizing this computation into smaller

FFTs that are computed separately on sublattices, which

allows efficient parallelization since these tasks are indepen-

dent (Brünger, 1989; Kay Diederichs, private communication).

CNS v.1.21 has implemented this approach via an OpenMP

environment (courtesy Kay Diederichs, University of

Konstanz; available at http://cns-online.org). Crystallographic

symmetry is then applied to the structure factors, and the

target function and its derivatives with respect to structure

factors are evaluated. Symmetry operators are applied to the

derivatives of the target function with respect to the structure

factors followed by inverse Fourier transform. Using the chain

rule, derivatives of the target function with respect to atomic

parameters are then computed by multiplication and

summation over the local neighborhood around each atom of

the derivatives of the electron density with respect to atomic

parameters.

Although the original SGFFT method was developed with

an isolated-atom description of electron density and isotropic

ADPs, it is generalizable to aspherical Cartesian Gaussian

multipoles and anisotropic ADPs. All that is needed are

formulae for the electron density and the derivatives of the

electron density with respect to atomic parameters, which then

can be inserted into equations (29) and (40) of Brünger (1989).

In the following sections, we develop these necessary

formulae.

2.2. Isolated-atom Gaussian density

The key mathematical property of Gaussians with respect to

efficient calculation of structure factors is that they are an

eigenfunction of the Fourier transform (FT). In other words, a

Gaussian in real space transforms to a Gaussian in reciprocal

space and vice versa. Consider the canonical spherically

symmetric Gaussian atomic scattering factor (Agarwal, 1978),

f ðn;�ÞðrÞ ¼ �3ð4�Þ3=2Pn
i¼1

ai

b
3=2
i

exp �
4�2�2jrj2

bi

� �
; ð1Þ

where ai and bi are constant parameters fitted to ab initio

calculations on isolated atoms (this work is based on a sum of

six Gaussians; n = 6; Su & Coppens, 1998), � is an expansion/

contraction parameter used to adjust the width of the density

and r is a position vector relative to the center of the atom. Its

FT is given by

f̂f ðn;�ÞðsÞ ¼
Pn
i¼1

ai exp �
bijsj

2

4�2

� �
; ð2Þ

where s is the reciprocal-lattice vector and we have used the

FT definition given in Appendix A. The reciprocal-lattice

vector is s = htA�1 = (A�1)th, where h is a column vector

with the Miller indices of a Bragg reflection and A is the

fractionalization matrix that transforms coordinates r with

respect to a Cartesian basis to fractional coordinates rfrac as

defined in a crystallographic basis set. The Debye–Waller

factor (Waller, 1923) is given by

t̂tðsÞ ¼ expð�2�2stUsÞ ð3Þ

in reciprocal space, where each element of the symmetric

positive-definite matrix U is defined via a Cartesian basis

consistent with PDB ANISOU records (Trueblood et al., 1996;

Grosse-Kunstleve & Adams, 2002). Multiplication of (3) by

the atomic form factor from (2) gives the scattering factor

�̂�ðn;�ÞðsÞ ¼ f̂f ðn;�ÞðsÞt̂tðsÞ ¼
Pn
i¼1

ai expð�2�2stUisÞ ð4Þ

based on Ui that are defined by

Ui ¼

U11 U12 U13

U21 U22 U23

U31 U32 U33

0
@

1
Aþ I3

bi

8�2�2
þ Uadd

� �
; ð5Þ

where Uadd is the artificial isotropic increase or decrease in the

ADP discussed above and I3 is a 3 � 3 identity matrix.

Removal of Uadd analytically from each structure factor after

the FT is straightforward. The only difference, therefore,

between each Ui is the isolated-atom scattering parameter bi.

Application of the inverse FT to (4) gives the real-space

anisotropic electron density

�ðn;�ÞðrÞ ¼ ð2�Þ�3=2 Pn
i¼1

aijUij
�1=2 expð� 1

2 rtU�1
i rÞ; ð6Þ

where |Ui| is the determinant of matrix Ui and Ui
�1 is its

inverse. This expression can also be viewed as the convolution

of the Gaussian form factor of (1) with the inverse Fourier

transform of the Debye–Waller factor of (3). Although the

underlying isolated-atom scattering factor is spherically

symmetric, convolution with anisotropic ADPs can lead to an

angular dependence in �(n,�)(r). Using the relationship that

B = 8�2U, one can show that (6) reduces to the isotropic

density expression reported by Brünger in equation (16) of
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Brünger (1989) if all diagonal elements of Ui are equal to

Uiso + bi/8�
2 + Uadd with zero off-diagonal components.

2.3. Polarizable atomic multipole electron density

For the derivation of an atomic multipole expansion from a

collection of point charges we begin with the Taylor expansion

of the electric potential V(r) at r arising from n partial point

charges that represent the electron density of an atom,

VðrÞ ¼
Pn
i¼1

ci

jr��ij

¼
Pn
i¼1

ci

�
1

r
þ�i;�

@

@�i;�

1

jr��ij

� �
�i¼0

þ
1

2
�i;��i;�

@

@�i;�

@

@�i;�

1

jr��ij

� �
�i¼0

þ . . .

�

¼
Pn
i¼1

ci

1

r
��i;�

@

@r�

1

r
þ

1

2
�i;��i;�

@

@r�

@

@r�

1

r
� . . .

� �

¼
Pn
i¼1

1��i;�r� þ
1

2
�i;��i;�r�r� � . . .

� �
ci

r
; ð7Þ

where �i is the position of partial charge ci, r� = @/@r� is one

component of the del operator, � 2 {x, y, z} and the Greek

subscripts {�, �} represent the use of the Einstein summation

convention for summing over tensor elements (Stone, 1996).

We omit the constant factor of 1/4�"0 throughout for com-

pactness. Let the monopole, dipole and traceless quadrupole

moments be defined as

q ¼
Pn
i¼1

ci;

d� ¼
Pn
i¼1

ci�i;�;

��� ¼
3
2

Pn
i¼1

cið�i;��i;� �
1
3 �2

i ���Þ; ð8Þ

where removal of the trace in the definition of the quadrupole

moment is allowed because the potential satisfies the Laplace

equation (i.e. r2V = 0). Substitution of the relationships in (8)

into the final expression of (7) gives the electric potential in

terms of a Cartesian multipole expansion, which we truncate

at quadrupole order

VðrÞ ¼ ðq� d�r� þ
1
3���r�r�Þ

1

r
: ð9Þ

We now replace the Coulomb potential of (9) with the

potential from the sum of Gaussians from (1), which is given

by

’ðn;�ÞðrÞ ¼
Pn
i¼1

ai

erfð2��r=b
1=2
i Þ

r
ð10Þ

and find

�ðrÞ ¼ ðq� d�r� þ
1
3 ���r�r�Þ’

ðn;�ÞðrÞ: ð11Þ

We now introduce unique superscripts on the charge, dipole

and quadrupole Gaussian basis sets, denoted by {nq, nd, n�}

and {�q, �d, ��}, to allow them to differ in number and width.

�ðrÞ ¼ q’ðnq;�qÞðrÞ � d�r�’
ðnd;�dÞðrÞ þ 1

3 ���r�r�’
ðn�;��ÞðrÞ:

ð12Þ

The potential of the charge density of (12) quickly approaches

the Coulomb potential as r increases since the error function

goes to unity such that at large r this potential satisfies the

Laplace equation and the use of a traceless quadrupole tensor

is still justified. Application of the Laplace operator to both

sides of (12) gives the negative of a continuous charge density

based on Cartesian Gaussian multipoles,

�ðrÞ ¼ �qf ðnq;�qÞðrÞ þ d�r�f ðnd;�dÞðrÞ � 1
3 ���r�r�f ðn�;��ÞðrÞ:

ð13Þ

In crystallography the convention is that electron density is

positive, so we will keep the negative sign. Therefore, a

negative partial charge equates to positive scattering density.

Inclusion of ADPs is described by convolution of (13) with

the real-space temperature factor,

�ADPðrÞ ¼ �ðrÞ � tðrÞ: ð14Þ

Based on the convolution differentiation rule

½r��ðrÞ� � tðrÞ � r�½�ðrÞ � tðrÞ� ð15Þ

the solution to (14) is given by substituting for f(r) in (13) with

the corresponding �(r) from (6) to give

�ADPðrÞ ¼ �q�ðnq;�qÞðrÞ þ d�r��
ðnd;�dÞðrÞ

� 1
3 ���r�r��

ðn�;��ÞðrÞ: ð16Þ

However, since q only represents partial atomic charges, the

contributions from valence and core electrons need to be

added. Additionally, the AMOEBA force field divides each

atomic dipole moment into permanent (d) and induced (u)

contributions to account for polarization. Therefore, we

construct the total atomic electron density at a location r

relative to the center of atom j by adding the contribution of

core and valence electron density to (16) and splitting the

dipole into permanent and induced components to give

�ADP;jðrÞ ¼ P
ðcÞ
j �
ð6;1Þ
j ðrÞ þ ½P

ðvÞ
j � qj��

ð6;�vÞ

j ðrÞ

þ ðdj;� þ uj;�Þr��
ð1;�dÞ

j ðrÞ � 1
3 �j;��r�r��

ð1;��Þ

j ðrÞ;

ð17Þ

where Pj
(c) is the integer number of core electrons (carbon has

two) and Pj
(v) is the integer number of valence electrons

(carbon has four). The superscripts on the anisotropic Gaus-

sian form factors �j
(n,�)(r) have been made explicit for our

model. We make the reasonable choice of using the isolated-

atom scattering parameters for both core and valence electron

densities. The width of the core electron density is frozen at

the isolated-atom description (� = 1) based on the observation

that chemical bonding does not perturb it significantly

(Hansen & Coppens, 1978). On the other hand, the width of

the valence electron density expands or contracts relative to

the isolated-atom model owing to a gain or reduction,

respectively, of electron density from or to covalently bonded

atoms. This effect is modeled by the width parameter of the

valence density �v. In this work, the dipole and quadrupole
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densities are described by a single Gaussian (nd = n� = 1)

based on a and b parameters set to unity. The widths of the

dipole and quadrupole densities are controlled by the �d and

�� parameters. In this work, the width parameters {�v, �d, ��}

are optimized against the diffraction data for each AMOEBA

multipole type. The multipole moments are fixed by the

AMOEBA force field and are not refined against the data.

The partial derivatives through second order of the aniso-

tropic and aspherical density defined in (6), which are required

for the real-space multipolar density given in (17), are

r��
ðn;�ÞðrÞ ¼ �ð2�Þ�3=2 Pn

i¼1

aijUij
�1=2

� expð� 1
2 rtU�1

i rÞðrtU�1
i u�Þ

r�r��
ðn;�Þ
ðrÞ ¼ ð2�Þ�3=2 Pn

i¼1

aijUij
�1=2

� expð� 1
2 rtU�1

i rÞ½ðrtU�1
i u�Þðr

tU�1
i u�Þ � U�1

i;���;

ð18Þ

where u� is a unit vector in the � direction with � 2 {x, y, z}. In

addition, the third-, fourth- and fifth-order terms of the

expansion are presented as supplementary information along

with a Mathematica notebook.1

To the best of our knowledge, (17) is the first expression

reported in the literature for a real-space form factor that is

the convolution of an atomic multipolar electron density with

anisotropic ADPs. This equation opens the door to exploring

precise polarizable atomic multipole refinements in tandem

with efficient computation of structure factors via FFT.

Given a molecular conformation, the AMOEBA perma-

nent multipole moments for each atom in the global coordi-

nate frame (q, d, �) are converted via rotation from a local

frame. For example, as shown in Fig. 1, the z axis of the local

frame for the carbonyl O atom of the peptide bond is in the

direction of the bond to the carbonyl C atom. Its positive x

axis is located in the O C—C� plane in the direction of the

C� atom and the y axis is chosen to give a right-handed

coordinate system (Ren & Ponder, 2002). The induced dipole

(u) on each atom is determined via a self-consistent field

(SCF) calculation, where the field is a sum of contributions

from the permanent atomic multipoles and induced dipoles.

The AMOEBA polarization model is described in greater

detail in work by Ren & Ponder (2002).

2.4. Derivatives of the electron density

2.4.1. Atomic coordinates. As a simplification, the deriva-

tion up to this point has assumed that the atomic center was

the origin of the coordinate system. However, for this section

on the derivatives with respect to atomic coordinates we place

atom j at rj in the global frame. In order to keep the derivation

manageable, we split the total electron density into that

produced by permanent charges �perm and that of induced

charges �ind,

�totalðrÞ ¼
Pn
j¼1

�perm;jðr� rjÞ þ �ind;jðr� rjÞ: ð19Þ

The derivative of the permanent multipole electron density of

atom j with respect to the � coordinate of atom j is given by

@�perm;jðr� rjÞ

@rj;�

¼ P
ðcÞ
j

@�ð6;1Þj ðr� rjÞ

@rj;�

þ
�
P
ðvÞ
j � qj

� @�ð6;�vÞ

j ðr� rjÞ

@rj;�

þ dj;�

@½r��
ð1;�dÞ

j ðr� rjÞ�

@rj;�

þ
@dj;�

@rj;�

r��
ð1;�dÞ

j ðr� rjÞ �
1

3
�j;��

@½r�r��
ð1;��Þ

j ðr� rjÞ�

@rj;�

�
1

3

@�j;��

@rj;�

r�r��
ð1;��Þ

j ðr� rjÞ; ð20Þ

where the derivative of the dipole and quadrupole densities

are each composed of two terms owing to the chain rule. As

described above, the dipole and quadrupole moments of each

atom are implicitly a function of its coordinates and the

coordinates of a few of its bonded neighbors (atoms k) that

define the local frame of the multipole. Therefore, the deri-

vative of the permanent multipole electron density of atom j

with respect to the � coordinate of atoms k must also be

considered,
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Figure 1
The local multipole frame of the carbonyl O atom of the peptide
backbone is shown. The positive z axis is along the C O bond and the x
axis is chosen in the O C—C� plane in the direction of the C� atom. The
y axis is directed into the page in order to achieve a right-handed
coordinate system. Also shown are the nonzero multipole moments of the
O atom and a qualitative representation of their shape. The dz Cartesian
Gaussian dipole (in Debye units) places electron density along the C O
bond, while the trace of the Cartesian Gaussian quadrupole (in
Buckingham units) positions electron density approximately at lone-pair
positions.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: DZ5164). Services for accessing this material are described at the
back of the journal.



@�perm;jðr� rjÞ

@rk;�

¼
@dj;�

@rk;�

r��
ð1;�dÞ

j ðr� rjÞ

�
1

3

@�j;��

@rk;�

r�r��
ð1;��Þ

j ðr� rjÞ; ð21Þ

where the derivatives of spherically symmetric terms are zero

with respect to the coordinates of atom k because they have no

dependence on the orientation of the local frame. Note that

the partial derivative of an anisotropic and aspherical density

tensor with respect to an atomic coordinate is the negative of

the partial derivatives given in (18), simply due to the negative

sign on rj. The derivatives of the polarizable density with

respect to atomic coordinates are very specific to the

AMOEBA electrostatic model and are discussed in Appendix

B. However, we note that computing the derivatives of a

polarizable density with respect to atomic coordinates is

O(n2 logn) using PME, which quickly becomes the most

expensive part of the overall calculation.

2.4.2. ADPs. The derivative of the anisotropic electron

density of atom j with respect to an anisotropic displacement

parameter Uj,	
 is given by

@�jðrÞ

@Uj;	


¼ P
ðcÞ
j

@�ð6;1Þj ðrÞ

@Uj;	


þ ½P
ðvÞ
j � qj�

@�ð6;�vÞ

j ðrÞ

@Uj;	


þ ðdj;� þ uj;�Þ
@½r��

ð1;�dÞ

j ðrÞ�

@Uj;	


�
1

3
�j;��

@½r�r��
ð1;��Þ

j ðrÞ�

@Uj;	


ð22Þ

and requires the partial derivatives of the Cartesian Gaussian

tensors with respect to ADP components. Introducing a few

relationships facilitates their presentation. Firstly, based on

the equality

@jUj

@U	


¼ jUjU�1
	
 ð2� �	
Þ ð23Þ

we have

@jUj�1=2

@U	


¼ � 1
2 jUj

�1=2U�1
	
 ð2� �	
Þ; ð24Þ

where the Kronecker delta �	
 is unity for diagonal elements

of U and zero otherwise. Differentiating an identity from

matrix algebra U�1U = I gives the following relationship

@U�1

@U	


¼ �U�1 @U

@U	


U�1; ð25Þ

which makes it possible to differentiate U instead of its

inverse. This is preferred since only one or two elements of

@U/@U	
 are equal to unity and the rest are zero. Specifically, a

single element is equal to unity if 	 equals 
, while two

elements are equal to unity otherwise, since U	
 and U
	

represent the same variable in this case. For convenience, we

define a 3 � 3 matrix J(	
),

Jð	
Þ ¼ �U�1 @U

@U	


U�1; ð26Þ

and based on the chain rule we have

@

@U	


expð�1
2r

tU�1rÞ ¼ �1
2r

tJð	
Þr expð�1
2r

tU�1rÞ: ð27Þ

Differentiating (6) with respect to U	
 and using (24), (27) and

the product rule gives

@�ðn;�ÞðrÞ

@U	


¼ ð2�Þ�3=2 Pn
i¼1

aijUij
�1=2

� expð�1
2r
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i rÞ12½�rtJ
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Þ
i r� U�1
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Þ�
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i rÞ

� f12 ½�rtJ
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Þ
i r� U�1
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Þ�ðr
tU�1
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Þ
i u�Þg
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@U	


¼ ð2�Þ�3=2 Pn
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�1=2 expð� 1

2 rtU�1
i rÞ

� f12 ½�rtJ
ð	
Þ
i r� U�1

i;	
ð2� �	
Þ�½ðr
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i u�Þðr
tU�1

i u�Þ � U�1
i;���

þ ½rtJ
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Þ
i u��ðr
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i u�Þ þ ðr

tU�1
i u�Þ½r

tJ
ð	
Þ
i u�� � J

ð	
Þ
i;��g: ð28Þ

2.4.3. Gaussian width. The Gaussian width parameter �
controls radial expansion and contraction of the Cartesian

Gaussian multipoles. Analogous parameters are used to

optimize the STOs within the Hansen and Coppens scattering

model (Hansen & Coppens, 1978). The derivative of the

electron density with respect to this parameter is similar to the

gradient for the ADP parameters. Two chain-rule terms are

necessary. Firstly, the gradient of the normalizing term

@

@�
ðjUij

�1=2
Þ ¼ �

1

2
jUij

�3=2 @jUij

@�
; ð29Þ

where

@jUij

@�
¼�

3b3
i

256�6�7
�

b2
i ðU11 þ U22 þ U33 þ 3UaddÞ

16�4�5

þ fbi½U
2
12 þ U2

13 þ U2
23 � U11U22 � U11U33 � U22U33

� 2UaddðU11 þ U22 þ U33Þ � 3U2
add�g=4�2�3: ð30Þ

Secondly, the gradient of the inverse ADP matrix is most

conveniently expressed using the gradient of the original ADP

matrix,

@U�1
i

@�
¼ �U�1

i

@Ui

@�
U�1

i ; ð31Þ

where

@Ui

@�
¼ �

bi

4�2�3
I3: ð32Þ

For convenience the matrix Ji
(�) is defined to more compactly

represent this result,

J
ð�Þ
i ¼

bi

4�2�3
U�1

i U�1
i : ð33Þ

Differentiating (6) with respect to � and using (29), (33) and

the product rule gives
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together with the third- and fourth-order terms available as

supplementary information.

2.5. Fourier transform of the polarizable atomic multipole
electron density

Remarkably, the FT of the anisotropic and aspherical

density given in (17) is simply

�̂�ADP;jðsÞ ¼ fP
ðcÞ
j f̂f
ð6;1Þ
j ðsÞ þ ½P

ðvÞ
j � qj�f̂f

ð6;�vÞ

j ðsÞ

� ðdj;� þ uj;�Þ2�is� f̂f
ð1;�dÞ

j ðsÞ

þ 1
3 �j;��4�2s�s� f̂f

ð1;��Þ

j ðsÞgt̂tjðsÞ; ð35Þ

where the dipole and quadrupole terms in (35) depend on the

FT of the partial derivatives defined in (18). Through fifth

order the reciprocal-space tensors are

F½r��
ðn;�ÞðrÞ�ðsÞ ¼ �2�is� f̂f ðn;�ÞðsÞt̂tðsÞ

F½r�r��
ðn;�Þ
ðrÞ�ðsÞ ¼ �4�2s�s� f̂f ðn;�ÞðsÞt̂tðsÞ

F½r�r�r��
ðn;�Þ
ðrÞ�ðsÞ ¼ 8�3is�s�s� f̂f ðn;�ÞðsÞt̂tðsÞ

F½r�r�r�r��
ðn;�ÞðrÞ�ðsÞ ¼ 16�4s�s�s�s� f̂f

ðn;�ÞðsÞt̂tðsÞ

F½r�r�r�r�r"�
ðn;�Þ
ðrÞ�ðsÞ ¼ �32�5is�s�s�s�s" f̂f

ðn;�Þ
ðsÞt̂tðsÞ ð36Þ

and in compressed tensor notation the general expression for

order u + v + w is

F½ru
xr

v
yr

w
z �
ðn;�Þ
ðrÞ�ðsÞ ¼ ð�2�iÞ

uþvþw
su

asv
bsw

c f̂f ðn;�ÞðsÞt̂tðsÞ: ð37Þ

This expression is considerably more compact than any

reported previously for an aspherical scattering factor in

reciprocal space, particularly the formulation based on STOs

and spherical harmonics (Hansen & Coppens, 1978). Notably,

our formulation has no dependence on cumbersome Fourier

Bessel transforms of Slater-type functions (Dawson, 1967a;

Hansen & Coppens, 1978; Su & Coppens, 1990). Our equation

(35) has been implemented by ‘direct summation’ for com-

parison to the performance of the FFT algorithm.

3. Scattering models

Four scattering models were implemented by modifying and

combining the CNS (Brünger et al., 1998) and TINKER

(Ponder, 2004) code bases. The scattering models were added

to the CNS code base, while TINKER was used to compute

AMOEBA chemical forces and to supply CNS with polariz-

able multipoles in the global frame.

3.1. Isolated atom

The first scattering model (‘IAM’) is the conventional IAM

based on the relativistic elastic scattering factors described by

Su & Coppens (1998).

3.2. Isolated atom with inter-atomic scattering

The second scattering model (‘IAM–IAS’) augments the

IAM with inter-atomic scattering sites at bond centers

(Afonine et al., 2007). Unlike the model of Afonine and

coworkers, our implementation does not include IAS sites at

lone pairs or at the center of aromatic rings. We have

neglected these sites based on the rationale that the

AMOEBA electrostatic model is sufficient to capture these

details of the electron density, which we provide further

evidence for below when discussing the refinement of a Tyr-

Gly-Gly tripeptide.

In our approach, chemically equivalent bonds are

constrained to use the same IAS parameters. Charge density

that is added to or removed from bond centers is exactly

balanced by changing the net charge of the bond-defining

atoms. For example, a bond charge of �0.2 e requires atomic

charge increments that sum to 0.2 e. In this way, all molecules

retain their original net charge. Each bond type requires three

parameters: the charge increments of both atoms and the

Gaussian width of the scattering site. Bond types are defined

based on the concatenation of the AMOEBA force-field atom

types.

3.3. AMOEBA

The third scattering model (‘AMOEBA’) is based on the

polarizable atomic multipoles of the AMOEBA force field.

Each chemically unique multipole type requires three Gaus-

sian width parameters as described in x2. The induced dipoles

were iterated to self-consistency using PME whenever any

atomic coordinates were changed during refinement (Darden

et al., 1993; Sagui et al., 2004; Essmann et al., 1995).

3.4. AMOEBA with inter-atomic scattering

The final scattering model (‘AMOEBA–IAS’) augments

AMOEBA electrostatics with inter-atomic scattering sites. It

became clear during the course of this study that an atomic

multipole expansion truncated at quadrupole order is insuf-

ficient to capture bond charge density for most molecular

geometries. This is consistent with theoretical observations by
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Stone and coworkers that the convergence of a distributed

multipole analysis (DMA) may be improved by using both

atoms and bond centers as expansion sites (Stone & Alderton,

1985; Stone, 2005). Furthermore, experimental data from the

X-ray scattering of diamond and silicon, simple examples of

tetrahedral bonding geometry, are explained by the super-

position of one atomic octopole moment and one atomic

hexadecapole moment (Dawson, 1967a,b). The characteristics

of the four scattering models are further clarified below with

respect to four peptide test cases.

The following computational details were constant across

all of the refinements. The isotropic ADP offset Uadd was set to

1/(4�2), which is equivalent to Badd = 8�2Uadd = 2, the FFT grid

factor to 0.33 (as appropriate for crystal structures at sub-

atomic resolution), and the electron-density cutoff around

each atom was 18 (specified by the Elim parameter in CNS).

These conservative parameters led to close agreement

between direct summation and FFT computation of structure

factors. The CNS parameter wA that controls the weighting of

X-ray target function relative to the force-field energy was set

to 1.0, although we also tested 0.2.

Etotal ¼ wAEX-ray þ Eforce field: ð38Þ

This raised Rfree values by less than 0.1% and lowered the

AMOEBA potential energy differences between refinements

presented below, but did not alter any trends or our conclu-

sions. It should be noted that force-field restraints are not

necessarily required for refinement at subatomic high resolu-

tion. However, their use in this study gives an insight into the

relative energetic cost of the structural changes arising from

differences in the four scattering models. A modified version

of the refine.inp CNS task file was used for all refinements

using the MLI target function.

4. Applications

To demonstrate the behavior of X-ray refinements based on

Cartesian Gaussian multipoles, we present two sets of appli-

cations. The first set is simply to illustrate the performance of

direct summation versus FFT and SGFFT computation of

structure factors as a function of system size. The second set

describes refinements on a series of four peptide crystals that

diffract to 0.59 Å resolution or better. All examples use the

AMOEBA force field for chemical forces, instead of the

default CNS force field based on Engh & Huber parameters

(Engh & Huber, 1991). Although the refinements were

performed in the native space group of each crystal,

AMOEBA energies and gradients as computed using the

TINKER code base required expanding to P1. This did not

increase the number of refined variables, but suggests the need

for an AMOEBA code that takes advantage of crystal

symmetry.

4.1. Runtime scaling on protein data sets

Evaluation of the target function and its derivatives by

direct-summation calculation of structure factors via (35) and

(36) is O(Natoms � Nreflections � Nsymm). Alternatively, the FFT

algorithm based on (17) and (18) is O(Ngrid� logNgrid), where

the number of grid points Ngrid depends on the resolution of

the diffraction data. Aspherical refinements based on the

Hansen–Coppens formalism are currently limited to direct

summation, since the real-space form of the electron density

convolved with ADPs is unknown. Therefore, the perfor-

mance of X-ray refinements based on Cartesian Gaussian

multipoles and FFT is of particular interest. The results are

summarized in Table 1 and are plotted in Fig. 2. Although the

performance difference is only about a factor of two for the

small protein crambin, over an order of magnitude improve-

ment is achieved for both ribonuclease A and aldose reduc-

tase. Parallelization with the SGFFT method results in a

further significant speedup (a speedup of a factor of nearly

four relative to a single processor on a four-processor

machine).

4.2. Refinement of peptide crystals

In principle, a more precise scattering model based on

Cartesian Gaussian multipoles with coefficients from the

AMOEBA electrostatics model should improve the quality of

refinements relative to the IAM as judged by both Rfree and

the potential energy of the asymmetric unit. Furthermore, the

quality of the AMOEBA potential energy function can also be
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Figure 2
The scaling of the Cartesian Gaussian multipole model, truncated at
quadrupole order, is plotted on a log–log scale for computation of the
intensity-based maximum-likelihood target function (MLI) for direct
summation, FFT and SGFFT. Direct summation scales linearly with the
product of the number of atoms, the number of reflections and the
number of symmetry operators. Computation of the crystallographic
target function by FFT of the Cartesian Gaussian multipole electron
density shows a speedup of a factor of between 1.8 and 14.5 compared
with direct summation. A further speedup factor of nearly four is
achieved using the SGFFT method on a four-processor machine.



assayed, since it is reasonable to expect that

potential energy and Rfree should be corre-

lated.

The peptide crystals studied include YG2

(Pichon-Pesme et al., 2000), cyclic P2A4

(Dittrich et al., 2002) and AYA with three

waters or with an ethanol molecule

(Chęcińska, Forster et al., 2006; Chęcińska,

Mebs et al., 2006). Detailed descriptions of

the unit-cell parameters, number of atoms,

resolution and measured reflections are

given in Table 2. The refinement results are

summarized in Table 3 and compared with

previous work below.

4.2.1. YG2. The Rfree values of the IAM

and IAM–IAS refinements of YG2 (4.60 and

3.86%, respectively) are slightly lower than

those reported by Afonine and coworkers

(4.72 and 4.06%, respectively; Afonine et al.,

2007). The Rfree value of the AMOEBA–

IAS refinement (3.50%) is a significant

improvement. The Rwork value (3.17%) of

the AMOEBA–IAS refinement is also lower

and is comparable to multipolar refinements

reported by Volkov and coworkers using

transferred or refined multipole coefficients

(3.66% and 3.42%, respectively; Volkov et

al., 2007). Cross-validation-based compar-

isons are unavailable in this case. We note

that the AMOEBA–IAS refinement used a

reflections-to-parameters ratio of 11.1,

which is slightly higher than the value of 10.6

reported by Volkov and coworkers using

refined multipole coefficients. This is

computed based on the number of reflec-
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Figure 3
(a) IAM, (b) IAM–IAS, (c) AMOEBA and (d) AMOEBA–IAM refinements, respectively, for
GY2. The Fo � Fc and 2Fo � Fc �A-weighted electron-density maps are contoured at 3.5� and
shown in green and gray, respectively. Both the IAM and AMOEBA models fail to explain the
electron density at bond centers seen in the data. In addition, the IAM model does not account
for lone-pair density on the O atom.

Table 2
Refinement systems.

Molecule Space group and unit-cell parameters (Å, �) Non-H atoms H atoms Bonds dmin (Å) Reflections

YG2 P212121, a = 7.98, b = 9.54, c = 18.32 22 19 40 0.43 4766
P2A4 P212121, a = 10.13, b = 12.50, c = 19.50 35 36 72 0.37 24878
AYA + 3 waters P21, a = 8.12, b = 9.30, c = 12.53, � = 91.21 26 27 50 0.59 5019
AYA + ethanol P21, a = 8.85, b = 9.06, c = 12.36, � = 94.56 26 27 52 0.59 5258

Table 1
Comparison of computational efficiency of direct-summation, FFT and SGFFT methods for the computation of the Cartesian Gaussian multipole
scattering factors.

The permanent multipole expansion was truncated at atomic quadrupoles and polarization was included via induced dipoles. The FFT method shows a speedup
factor of 1.8–14.5 relative to direct summation. Parallelization by SGFFT provided an additional factor of 3.7–3.9 using four processors. All calculations were
performed on a MacPro workstation with 2 � 2.66 GHz Dual Core Intel Xeon processors.

PDB
code Atoms Reflections Nsymm

Atoms � reflections �
Nsymm � 10�6 Direct (s) FFT (s) Direct/FFT SGFFT (s) Direct/SGFFT

1ejg 642 112209 2 144.1 49.9 28.1 1.8 7.3 6.8
2vb1 2544 187165 1 476.1 301.8 91.5 3.3 23.6 12.8
1fn8 4294 158550 1 680.8 245.1 45.8 5.4 12.4 19.8
1dy5 4835 159422 2 1541.6 505.6 37.0 13.7 9.7 52.1
1us0 6865 511265 2 7019.7 2346.2 162.3 14.5 42.3 55.5



tions reported in Table 2 and the number of parameters given

in Table 3.

Electron-density maps of the tyrosine ring for the four

scattering models are shown in Fig. 3, which lend visual insight

into their properties. The non-H atom positions are apparent

in the 2Fo � Fc contours for each

refinement. The standard IAM scat-

tering model underestimates the elec-

tron density at bond centers and at the

oxygen lone-pair sites, as shown by the

Fo � Fc contours. Our IAM–IAS scat-

tering model explains the electron

density at bond centers, but does not

capture lone-pair electron density.

Conversely, the AMOEBA model

places electron density approximately

at the lone-pair positions but not at

bond centers. Finally, the AMOEBA–

IAS model explains much of the lone-

pair and bonding electron densities.

4.2.2. P2A4. The Rfree values of our

IAM and IAM–IAS refinements of

P2A4 (3.73 and 3.01%, respectively)

agree closely with the values of Afonine

and coworkers (3.63 and 3.23%,

respectively; Afonine et al., 2007). The

Rfree value of the AMOEBA–IAS

refinement (2.94%) is lower by 0.07%,

which is the least amount of improve-

ment seen for AMOEBA–IAS relative

to IAM–IAS in this study. The Rwork

value (2.86%) of the AMOEBA–IAS refinement is slightly

higher, but comparable to those reported by Volkov and

coworkers using transferred or refined multipole coefficients

(2.60% and 2.53%), although this work uses a higher reflec-

tions-to-parameters ratio (50.3 compared with 43.6; Volkov et

al., 2007). As for YG2, cross-validation was not performed.

The similarity of the R values for YG2 and P2A4 between the

AMOEBA–IAS refinements and the multipolar refinements

of Volkov and coworkers is consistent with the principle that

bond scattering sites capture density that is represented by

higher order atomic moments missing in the AMOEBA model

(octopole and hexadecapole).

In Fig. 4 the precision of the Rwork and Rfree values

computed using discrete FTs are compared with analytic

direct summation for P2A4 under the AMOEBA scattering

model. Agreement to four decimal places is seen for Badd

values between 0 and 3 Å2, which serves as validation of the

correctness of (17) and (35). These results support the

conclusion that FFT-based computation of structure factors is

appropriate for anisotropic and aspherical scattering models.

4.2.3. AYA. The AYA data sets were chosen because of the

extremely low temperature achieved during the measurement

of structure factors (9 K for AYA + three waters and 20 K for

AYA + ethanol). For AYA + water, Chęcińska and coworkers

(Chęcińska, Forster et al., 2006; Chęcińska, Mebs et al., 2006)

originally reported an R value of 2.4%, which is in agreement

with the R value of our IAM refinement (2.67%). Addition of

IAS lowered the Rfree statistic from 2.71% to 2.39%, while

addition of polarizable atomic multipole electron density

showed a further improvement to an Rfree of 1.95%. For

AYA + ethanol the Rwork value of the IAM (3.20%) is
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Table 3
Refinement statistics and the relative AMOEBA potential energy per asymmetric unit are given for
four small peptide crystals using the IAM, IAM–IAS, AMOEBA and AMOEBA–IAS scattering
models.

In all cases, the lowest Rfree was found using the AMOEBA–IAS scattering model. Furthermore, the
structure with the lowest AMOEBA potential energy per asymmetric unit also corresponded to
AMOEBA–IAS refinement.

Rwork/Rfree (%)

Molecule
Scattering
model Nparam

Ndata/
Nparam Iobs/�(Iobs) > 0 Iobs/�(Iobs) > 3

Energy†
(kcal mol�1)

YGG IAM 274 17.4 4.73/4.74 4.41/4.60 36.5
IAM–IAS 349 13.7 3.93/4.01 3.59/3.86 7.2
AMOEBA 355 13.4 4.50/4.56 4.16/4.37 6.8
AMOEBA–IAS 430 11.1 3.54/3.72 3.17/3.50 0.0

PPAAAA IAM 339 73.4 4.25/4.22 3.65/3.73 32.2
IAM–IAS 417 59.7 3.56/3.48 3.00/3.01 18.3
AMOEBA 417 59.7 4.24/4.23 3.69/3.77 12.9
AMOEBA–IAS 495 50.3 3.42/3.42 2.86/2.94 0.0

AYA + 3 waters IAM 342 14.7 2.75/2.79 2.67/2.71 17.5
IAM–IAS 411 12.2 2.24/2.47 2.16/2.39 4.1
AMOEBA 423 11.9 2.40/2.55 2.31/2.47 4.7
AMOEBA–IAS 492 10.2 1.72/2.03 1.64/1.95 0.0

AYA + ethanol IAM 342 15.4 3.30/3.50 3.20/3.33 23.1
IAM–IAS 423 12.4 2.32/2.66 2.21/2.49 14.8
AMOEBA 435 12.1 3.42/3.75 3.32/3.58 3.7
AMOEBA–IAS 516 10.2 1.90/2.25 1.79/2.08 0.0

† 1 kcal mol�1 = 4.186 kJ mol�1.

Figure 4
The precision of numerical computation of the Rwork and Rfree values via
FFT is compared with analytic direct summation as a function of the
isotropic increase Badd in ADP parameters for P2A4 under the AMOEBA
scattering model. Note that Badd = 8�2Uadd.



comparable to that reported originally by Chęcińska and

coworkers (2.9%). IAM–IAS lowered Rfree from 3.33 to

2.49%, while AMOEBA–IAS achieved 2.08%.

4.3. Refinement summary

The results for all four peptide refinements are summarized

in Fig. 5. In every case, use of the AMOEBA–IAS scattering

model relative to the IAM scattering model lowered both Rfree

and the potential energy of the crystal. When the IAM scat-

tering model is used, molecular conformations are highly

strained to compensate. For example, H—C atom bonds are

too short because the IAM model centers electron density at

the hydrogen nucleus. In the crystal structures, this electron

density is shifted towards the C atom. As the description of the

electron density is improved, the molecular conformation

relaxes by approximately 16 kJ mol�1 per residue. The precise

amount of relaxation depends on the weighting between the

crystallographic target and the force field. Unrestrained

refinements with an IAM scattering model could adopt even

more unphysical conformations. This suggests that accurate

chemical restraints are necessary even for ultrahigh-resolution

refinements unless an anisotropic and aspherical scattering

model is used.

In Fig. 6, we present plots of the IAS sites that were refined

for each peptide system. Their Gaussian full-width at half-

maximum (FWHM) is plotted against charge magnitude for

both the IAM–IAS and the AMOEBA–IAS models. The

majority of the charges under the IAM–IAS model and all of

the charges under the AMOEBA–IAS model refined to

negative partial charge values (or positive scattering density),

which is consistent with the physical concentration of charge

density at chemical bonds. The similarity of the refined charges

between the IAM–IAS and the AMOEBA–IAS models

suggests that an atomic multipole description of electron

density truncated at quadrupole order underestimates density

at trigonal and tetrahedral bond centers.
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Figure 5
The improvement arising from the AMOEBA–IAS scattering model,
relative to the IAM model, is plotted as a function of relative percentage
improvement in Rfree value and the relative AMOEBA potential energy
per residue. For all data sets, the best Rfree value and lowest potential
energy per residue were achieved using the AMOEBA–IAS scattering
model. 1 kcal mol�1 = 4.186 kJ mol�1.

Figure 6
For the inter-atomic scattering sites of the IAM–IAS (a) and AMOEBA–
IAS (b) scattering models, the refined Gaussian full-width at half-
maximum (FWHM) is plotted versus partial charge magnitude. The
majority of charges for the IAM–IAS model and all charges for the
AMOEBA–IAS are negative. The sub-angstrom FWHM values are
consistent with very localized bond densities.



5. Conclusions

Cartesian Gaussian multipoles offer an efficient alternative to

the Hansen and Coppens formulation of aspherical scattering.

They eliminate the use of Slater-type functions and allow

structure factors to be computed by FFT. Numerical tests show

that that FFT and direct-summation implementations of

Cartesian Gaussian multipoles agree to high precision. For

subatomic resolution biomolecular data sets such as ribo-

nuclease A and aldose reductase, parallelized computation of

structure factors using the SGFFT method results in a speedup

of one to two orders of magnitude compared with direct

summation.

Ideally, a force-field electrostatics model should be accurate

enough to explain the electron density observed in X-ray

diffraction experiments. Although the AMOEBA polarizable

multipole force field energetic model shows promise, trunca-

tion of the permanent moments at quadrupole order system-

atically underestimates electron density at bond centers. Our

results suggest that the added computational expense of

including hexadecapole moments in the atomic scattering

factor computation is justified. As supplementary information

we have provided a Mathematica notebook and formulae that

allow computation of Cartesian Gaussian multipoles up to the

fourth order in anticipation of further improvements to force

fields.

In the near future, we will present the results of applying

our polarizable atomic multipole refinement methodology to

macromolecules. For ultrahigh-resolution macromolecular

data sets, such as HEWL at 0.65 Å (Wang et al., 2007), our

scattering model significantly improves refinement statistics, as

it does for the simpler peptide cases presented here. Equally

exciting will be the use of the AMOEBA force field and in

particular the electrostatic forces to orient water molecules in

the absence of clear H-atom electron density. We anticipate

that refinement of hydrogen-bonding networks will enhance

the usefulness of X-ray crystallography experiments with

respect to explaining pKa shifts, ligand-binding affinities and

enzymatic mechanisms.

APPENDIX A
Fourier transform definition

The definition and notation for the Fourier transform as used

in this work is given by

f̂f ðkÞ ¼
R1
�1

f ðtÞ expð2�iktÞ dt

¼ F½f ðtÞ�ðkÞ ð39Þ

and the corresponding inverse Fourier transform by

f ðtÞ ¼
R1
�1

f̂f ðkÞ expð�2�iktÞ dk

¼ F�1½f̂f ðkÞ�ðtÞ: ð40Þ

APPENDIX B
Derivative of the polarizable electron density with
respect to atomic coordinates

The total polarizable electron density arising from the induced

dipole of all atoms is given by

�indðrÞ ¼
Pn
i¼1

ui;�ri;��
ð1;�dÞ

i ðrÞ: ð41Þ

The gradient of this density with respect to the � component

of atom j is

@�indðrÞ

@rj;�

¼
@

@rj;�

Pn
i¼1

ui;�ri;��
ð1;�dÞ

i ðrÞ

¼
Pn
i¼1

@ui;�

@rj;�

ri;��
ð1;�dÞ

i ðrÞ

� �
þ �ijui;�r�r��

ð1;�dÞ

i ðrÞ: ð42Þ

The second term is nonzero only for i = j and is simple to

calculate. The first term, however, depends on @ui,�/@rj,� which

is the derivative of a component of the induced dipole of atom

i with respect to the � component of atom j. In other words,

perturbing the position of atom j affects not only its own

scattering but that of all polarizable atoms. The induced dipole

on atom i arises from the self-consistent crystal field multiplied

by the polarizability,

ui ¼ �iEi

¼ �i

P
k 6¼i

Tð1Þik Mk þ
P
k6¼i

Tð11Þ
ik uk

" #
; ð43Þ

where �i is the atomic polarizability of atom i, Tik
(1) is a matrix

of tensors that produces the field at site i

T
ð1Þ
ik ¼

@

@xi

@2

@xi@xk

@2

@xi@yk

@2

@xi@zk

. . .

@

@yi

@2

@yi@xk

@2

@yi@yk

@2

@yi@zk

. . .

@

@zi

@2

@zi@xk

@2

@zi@yk

@2

@zi@zk

. . .

0
BBBBBB@

1
CCCCCCA

1

rik

ð44Þ

owing to the multipole Mk at site k

Mk ¼ ðqk; dk;x; dk;y; dk;z;�k;xx;�k;xy;�k;xz; . . . ;�k;zzÞ
t
ð45Þ

and Tik
(11) is the matrix of tensors that produces the field at site i

T
ð11Þ
ik ¼

@2

@xi@xk

@2

@xi@yk

@2

@xi@zk

@2

@yi@xk

@2

@yi@yk

@2

@yi@zk

@2

@zi@xk

@2

@zi@yk

@2

@zi@zk

0
BBBBBB@

1
CCCCCCA

1

rik

ð46Þ

owing to the induced dipole uk at site k. For simplicity, we have

not formulated (43) using PME electrostatics. Therefore, the

sum over k includes all atoms in the crystal except atom i. The

derivative of (43) with respect to coordinate rj,� is given by

research papers

Acta Cryst. (2009). D65, 952–965 Schnieders et al. � Polarizable atomic multipole X-ray refinement 963



@ui

@rj;�

¼ �i

Pn
k 6¼i

�
@Tð1Þik

@rj;�

Mk þ T
ð1Þ
ik

@Mk

@rj;�

( #

þ
Pn
k 6¼i

@Tð11Þ
ik

@rj;�

uk þ T
ð11Þ
ik

@uk

@rj;�

" #	

¼ �i

�
�jk

@Tð1Þik

@rj;�

Mk þ
P

k¼fjg

Tð1Þik

@Mk

@rj;�

þ �jk

@Tð11Þ
ik

@rj;�

uk þ
Pn
k6¼i

T
ð11Þ
ik

@uk

@rj;�

�
: ð47Þ

The first three terms on the right-hand side are not difficult to

compute. However, the fourth term shows that the gradients

of the polarizable scattering are O(n3) without use of PME.

Specifically, there are 3n � 3n induced dipole density deri-

vatives, each of which is the sum of 3n terms. In this work, we

have computed these derivatives by finite differences using

PME, which is O(n2 logn).
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Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,

Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M.,
Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L.
(1998). Acta Cryst. D54, 905–921.
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